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Can Quantum Chemistry Provide
Reliable Molecular Hyperpolarizabilities?

Rodney J. Bartlett and Hideo Sekino
Quantum Theory Project
Departments of Chemistry and Physics
University of Florida
Gainesville, Florida, USA 32611-8435

In the late 70’s, one of us (RJB) became interested in molecular hyperpolarizabilities
as the essential element in non-linear optics (NLO) when Gordon Wepfer at the Air
Force Office of Scientific Research called attention to J. F. Ward’s results from dc-
induced second harmonic generation (dcSHG) experiments and the enormity of their
discrepancy with theoretical results. Tables I and II are extracted from a slightly later,
1979, paper of Ward and Miller (/) demonstrating the problem.

Not only was the existing theory results of the time typically in error by a factor
of 3 to 5 in magnitude for the electric susceptibility, X|(|2), but even the signs were

frequently wrong. (The sign is positive if the measured quantity “Xl(l2) is positive,

where 1 is the permanent dipole moment.) When experimental numbers were obtained
by other techniques, which should only differ by different dispersion effects that are
typically less than 10%; they, too, had little correspondence with the dcSHG data.
Note from Table I the -3500 value for NH3 from refractivity virial data compared to
-209+5 for the deSHG, Xl(f).

Table I x{? in units of 1033 esu/molecule. Theoretical values from various

molecular orbital calculations — semi-empirical (SE), uncoupled Hartree-Fock (HF),

and coupled Hartree-Fock (CHF) — and a single other experimental value are included
) . @) . : . :

for comparison. The sign of px,” is unambiguously determined by the experiment

and is independent of the sense chosen for the molecular z axis. This table extracted
from J. F. Ward and C. K. Miller (/).

THEORY
a (2) : Other
15 X| SHG | Semi- | Uncoupled| Coupled EXP
Empirical HF HF
cot 0.112 +129 £14 | _43.5b +879°¢
+0.005 (+95)d +420°
+387¢
-438°




Table I X(2) in units of 103 esu/molecule. Theoretical values from various

molecular orbital calculations — semi-empirical (SE), uncoupled Hartree-Fock (HF),

and coupled Hartree-Fock (CHF) — and a single other experimental value are included
. . @) . . . .

for comparison. The sign of x| is unambiguously determined by the experiment

and is independent of the sense chosen for the molecular z axis. This table extracted

from J. F. Ward and C. K. Miller (1).

THEORY
e ) - Other
H X| SHG | Semi- | Uncoupled| Coupled EXP
Empirical HF HF
co* 0.112 [ +129 +14 | _435b +879¢
+0.005 (+95)d +420¢
+387¢
-438¢
N-O* | 0.15872 | +147 17 | 447.7b
+0.00002
Hy*S 0.974 -43 19
+0.005
N-Hs* 1.474 -209 5 56.4b 44 .4f -35008
+0.009 -65.1f
-19.0f
-15.6"
-40.8h
Hy*Or 1.86 94 +4 120P 90.6 52.5f
+0.02 -79.2f
21.9f
-51.6
-48.00

2 Electric dipole moments in Debye units from Landolt-Bernstein, Zahlenwerte
und Funktionen, Neue Serie, Vols. II/4 and II/6 (Springer-Verlag, Berlin) and Ref.
18. The sense of the NO moment is suggested by F. P. Billingsley II, J. Chem. Phys.
63 2267 (1975); 62, 864 (1975).

b N. S. Hush and M. L. Williams, Theoret. Chim. Acta (Berlin) (25), 346
(1972). Signs for NH3 and H,O are ambiguous.

¢ J. M. O’Hare and R. P. Hurst, J. Chem. Phys. (46), 2356 (1967).

d XEZL (0;,0,0) from A. D. McLean and M. Yoshimine, J. Chem. Phys. (46),
3682 (1967).

¢ S. P. Liebmann and J. W. Moskowitz, J. Chem. Phys. 54, 3622 (1971).
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f P. Lazzeretti and R. Zanasi, Chem. Phys. Lett. (39), 323 (1976) Note added
in proof. Recent reconsideration of the sign of these entries yields the negative signs
now shown here — P. Lazzeretti (private communication). Overall consistency is
substantially improved by this change.

& Refractivity virial data from A. R. Blythe, J. D. Lambert, P. J. Petter and H.
Spoel, Proc. R. Soc. (London) A 255, 427 (1960).

h G. P. Arrighini, M. Maestro and R. Moccia, Symp. Farad. Soc. 2, 48 (1968).

In Table II, the discrepancy among different experiments is even more apparent
for XI(IS) compared to other dcSHG values, three wave mixing (TWM), Kerr effect,
and third harmonic generation (THG) experiments. The theory is even off by about a
factor of 2 from a static value for H,. The one reasonable theoretical number they cite
is our static, correlated value for Nj, one of our first (unpublished), that is beginning

to be in reasonable agreement with XI(IB)'




Table 1I X(B) in units of 107° esu/molecule. Values from other dc-electric
field-induced second-harmonic generation (dcSHG), three-wave mixing (TWM),
Kerr effect, and third-harmonic generation (THG) experiments, along with theoretical
results, are included for comparison. This table extracted from J. F. Ward and C.
K. Miller (1).

XI(IS)

dcSHG

Ward & dcSHG* | TWM? Kerr THG® | Theory

Miller
H, 65.2 0.8 79 - 474 45 80 £12 34°
N, 86.6 £1.0 - 104 120f +10 107 217 | 718
0, 95.3 £1.6 110 100 - - -
CO, | 111.9+13 - 192 750f +160 | 156 +23
CO 144 14 - 138 - - -
NO 235 17 - 322 - - -
H,S 865 122 - - - - -
NH; 51149 - - - - -
H,0 194 £10 - - - - -

2 Data from G. Mayer, C. R. Acad. Sci. B276, 54 (1968) and G. Hauchecorne, F.
Kerbervé and G. Mayer, J. Phys. (Paris) 32, 47 (1971), normalized using the dcSHG
coefficient for argon from R. S. Finn and J. F. Ward, Phys. Rev. Lett. 26, 285 (1971).

® Data from W. G. Rado, Phys. Lett. 11, 123 (1967), normalized using the
dcSHG coefficient for argon from R. S. Finn and J. F. Ward, Phys. Rev. Lett. 26,
285 (1971).

¢ J. F. Ward and G. H. C. New, Phys. Rev. 185, 579 (1969).

4A.D. Buckingham and B. J. Orr, Proc. R. Soc. (London) A305, 259 (1968).

¢ Xzzz2 (0;0,0,0) from A. D. McLean and M. Yoshimine, J. Chem. Phys. 46,
3682 (1967).

fA. D. Buckingham, M. P. Bogard, D. A. Dunmur, C. P. Hobbs and B. J. Orr,
Trans. Fora. ‘Soc. 66, 1548 (1970).

& X222 (0;0,0,0) from R. J. Bartlett and G. D. Purvis (private communication).

This chapter, which is intended to be useful to experimentalists who are trying
to assess the reliability of the theory, but also to theoreticians, as it provides an
overview of the theory which can and has been used, addresses the demands that
hyperpolarizabilities place on first-principle ab initio electronic structure theory; and
the level required for the adequate evaluation of molecular hyperpolarizabilities. After
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doing some basic elementary perturbation theory that underlies all that is done, and
which provides definitions and a framework for discussion, we will explain the various
levels of quantum chemical application, illustrated by numerical results we have
obtained that emphasize the various approximations employed in electronic structure
in its application to hyperpolarizabilities. We will also demonstrate how the theory
has necessarily evolved to provide a realistic treatment of such properties.

The order of presentation will follow our own odyssey that led us to introduce
electron correlation into molecular hyperpolarizabilities (2,3), using, then new, many-
body perturbation theory (MBPT) methods (4,5); to make a prediction for the
FH molecule, that had later ramifications (6,7); to use new coupled-cluster (CC)
correlated methods including those augmented by triples (8,9); to explore vibrational
polarizabilities in static electric fields (10); and to introduce frequency dependence by
developing analytical derivative time-dependent Hartree Fock (TDHF) theory (11,12).
The latter, which enables a first (decoupled) treatment of both the essential frequency
dependent and correlation aspects of the problem (/3), culminates in a uniform
study of ten molecules (/4). The correlation calculations were assisted by parallel
developments in analytical derivative CC/MBPT theory (15-18). Finally, we coupled
correlation and frequency dependence in the new equation-of-motion (EOM) CC
method for hyperpolarizabilities (19,20). By taking this evolutionary viewpoint, we
hope the current review will complement the other recent excellent reviews (21-23)
on the topic.

The theory also offers different, conceptual viewpoints on hyperpolarizability
evaluation and interpretation, and this degree of flexibility should be better appreciated
when comparing theoretical numbers and addressing NLO design criteria. We will
conclude with some recommendations for some future developments in the continuing
evaluation of predictive quantum chemical methods for NLO material design.

Perturbation Theory of Molecular Hyperpolarizabilities

The quantities of interest are the electric susceptibilities X(2) and x|(|3). In the gas phase

experiments of interest here, there is no particular distinction between macroscopic
and microscopic susceptibilities and the hyperpolarizabilities, as they are simply
related. Those of particular interest are obtained from electric field (dc) induced
second harmonic generation experiments (). Namely, a sample of gas is subjected
to a dc field (e¢,) and an optical electric field ¢, (eiwt + e‘i“’t) at frequency w, to
induce a dipole moment at frequency 2w. Allowing for the various manipulations
required to relate the molecular quantities to the laboratory fixed observables,

ﬁzw = gxﬁ(——Zw; o,w,w)gogio
®3) P (2 (D
Xjj(—2w;0,0,0) = X7 (—2w; 0,w,w) + Q_K_TXI(I ) (= 2w; w, w)

xl(lz)(—2w;w,w) for second harmonic generation (SHG) is separated from

X|(|3)(—2w; 0,w,w), which is dcSHG, by studying 72 as a function of 7. Numbers




relative to a standard, typically He gas, are obtained. Revisions of the He reference
value cause some slight rescaling of the experimental numbers (22). Furthermore,
we relate the susceptibilities to the molecular hyperpolarizabilities via,

X (—2w;w,0) = By(~2w;w,w)/2
1
=3 [(5iij + Biji + ﬂjjz')/5]

x|(|3)( —2w;0,w,w) = y)(—2w; 0,w,w)/6

1
6

where the Einstein summation convention is employed, meaning all repeated indices
are summed, i.e. ¥y = ¥ +7yy+9,,. The parallel designation (||) means measured
parallel to the dc field, while the (L) component can be similarly obtained. As
By and - are properties of molecules, they constitute the objective for first-principle
quantum mechanical evaluation; the subject of this chapter.

The basic idea underlying any treatment of a molecular response to an electric
field, static or oscillatory, is the solution of the molecular Schrodinger equation in the
presence of the field. We will first consider the static case, generalizing the approach
for frequency dependence in Section 7. Our perturbation &, - W =¢,- > e;7; is given

2

[(’Yiijj +%ijgi + Vijij)/ 15]

?
by the interaction of an electron e; at position 7; with a static electric field,
€0 = Ezot + Eyol + €20k, 3)

where €50, €40, and €, are the field strengths in the x, y, and z directions of magnitude
le|. In atomic units, e becomes minus unity, so we have a Hamiltonian,

H(E) =Ho+ - W =Ho =&, » 7, )

i
where H, consists of the usual kinetic energy, —% Z V2 and potential energy,
Z Fats E s t3 Z —F—ﬁ composed of the electron nuclear attraction, the two-

electron electron electron repulsion operator, and the proton-proton repulsion. Greek
letters indicate atoms and i,j electrons. W contains the negative sign. The solution
to the time independent Schrodinger equation

Hoi = E{Yy ®)

provides the ground, ¥, = 15 and excited states, {17}, and associated eigenvalues,
{ER}, for the unperturbed molecule. Notice these are the exact, many-particle
unperturbed states.

We now seek a solution for the perturbed Hamiltonian in its ground state

H(Eo)U(E,) = E(&,)U(&,) (6)




The natural way to attempt a solution is perturbation theory. Hence, we expand,
H(E,), U(é,) and E(&,) in a perturbation series in &,. For the time being, we will
assume the field lies solely in the z direction, so €z, = €y, = 0 and €, = €,. Then,

(Ho + 50W) (¢o + 50¢(1) + 53¢(2) + 6310(3) +.. )
(7N
= (E + e, EW 422 4 ) (zp,, +eap® + .. )

As the equality has to be true for any power of ¢, (i.e. all quantities are linearly
independent), gathering terms of a given power of ¢, together, we obtain for £1;

(B = Hop® = (W = BV )y, ®)
for €2
(Bo = Ho)p® = (W — BV )y — E@y, ©)
for &3
(B, — Hy)p® = (W _ E(l))¢<2) — E®y, — By (10)
and for &2

(E, — Ho)¢(4) = (W - E(l))¢(3) — E@Wqy, — E@ypD _ E@y@  (11)

These are sufficient to take us through the electronic dipole moment, 4, the dipole
polarizability tensor, @, and the 8 and v, hyperpolarizability tensors. Multiplying on
the left by (v,|, and using the fact that (v, |(E, — H,) = 0, we have

EW) = (3| Wibo) (12)

Similarly, we obtain

B® = (| (W = EO) 9 ) = (ol )
E®) = (oW p?) = (¢ W — ED D) (13)
B = (oW ®) = (3P| B, — Ho[y®) — EO D)

where we have used the intermediate normalization condition, (v),|1(™) = 0 for m #
0. The second form comes from manipulations that demonstrate the 2n+1 rule that an
n'h order wavefunction will determine E2**! and the analogous 2n rule for even orders.

Instead of straightforward perturbation theory, we can also derive these formulae
from explicit differentiation of the expectation value of W(e,) with respect to ,.
From equation 6, we have the expectation value,

E(e0)(¥(€0)|¥(e0)) = (¥(e0)|H(e0)| ¥ (o)) (14)
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and differentiation gives,
(v | () = ) | 52 )+ (G | (e = ) | wGen))

— (%) | 5 - oo \ ¥())

As we want to evaluate this at £, = 0, using (H, — E,)|¥,) = 0, and its complex
conjugate (c.c.), gives

OF
2z e

This is simply a statement of the simple Hellman-Feynmann theorem that the deriva-
tive of the energy is given as the expectation value of gsﬂo.

(15)

If we proceed to the higher derivatives, we will obtain

OE OH OF | o¢ oY
Oe2 LO—O <¢° de, Oe, 350> tee = <1/)° de, 350> Fec (D
. 18%E O
2 Oe? L -0 <¢° 850 Beo> (18)
In third and fourth order,
18°E ' OH | 1%\ _ /0y |OH BE | &y
3! 9e3 cm0 °| Be, | 2002/ ~ \Oe, | Beo  Oc, | Oc, 9
LoE) (| o) 12 o
41 0t |, o ? 3! Oed

Clearly, this is simply perturbatlon theory, since up to a numerical factor,
) = 51@ EW® = aE , @ = la—'f- E@ = 1%—@-, etc. In other words, we use a

McLaurin’s series expanswn for E, E(so) Eot+8Ze,+ 3 %52 + %%—563 +...and
VU, instead of a straight perturbation series, which introduces the numerical factors
that relate the perturbative energies to the derivatives E(™® = 1 %—
We now define the electric properties as the electric dlpole in the z direction:
OF
5 = <¢o ¢o> = <¢o ¢o> = B0 (20)
€o
the dipole polarizability;
O’E oY
L _a —9 w oMW\ =95®
53 == (0 | 5| o) =2 | W] v @
the first hyperpolarizability;

OE
383 - "/Bzzz = <1/)o

2
23)-afu o]y e




and the second hyperpolarizability;

0‘E oM | 83
&Z = ~Vzzzz = 4<¢o g" a;f> - 4!<¢0 w ] ¢(3)> = 4!E(4) (23)
o 0 0
That is,
1, 1, . 1
E(go) = Eo — HzEz0 — iazzezo - aﬂzzzgzo - Z!"Yzzzzgzg +... (24)

which gives the well known series.

More generally, when all components are considered, with the Einstein summation
convention, we have

1 1 1
E=F — picio — =0ij€iokjo — —BijkEiojocho — 1 Yijki€io€joEkoClo — ... (25)
21 3! 4!

or for the induced dipole moment,

1 1
ti(€o) = pi(0) + cijejo + aﬂijkgjogko + 3 Yiski€ o kollo + - - (26)

Whether the numerical factors are included determines the choice of conventions for
polarizabilities. Ward and co-workers use the perturbative definition, meaning that
E® =qo E® = B, and EW = Y » .g., while the power series choice directly
associates the derivatives with the polarizabilities, obviating the numerical factors.
Since this choice has direct correspondence with the energy derivatives, it appeals
more to theoreticians.

To evaluate the polarizabilities, we require a knowledge of the perturbed wave-
functions (wavefunction derivatives). It is convenient to introduce the resolvent op-
erator,

R, =(E, - H,)7'Q @7
where Q represents the projector (Q%°=Q) of all functions orthogonal to the unper-
turbed reference, v,. One such set consists of all other eigenfunctions of H, (dis-

crete and continuous), making Q = 3 ¢,(co)><¢,(co) ‘ For this particular set,
k#o

-1 -1
Rolyg) = (Ea - E',(co) ) [¥2)Q = Q(E’o — E,(co)) |¢,(c°) ). By virtue of excluding
%o, the inverse R, operator is well defined. In terms of the resolvent,

s =R, (W _ E(l))% = R, W,
@ =R, (W - E(l))¢(1) (28)
v® = R, (W - E(l))¢(2) — R,E@ M)

etc., showing that all order wavefunctions are recursively computed from the prior
ones. Knowing these solutions, we can compute the energy from

B = (4 [W (™) (29)
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or explicitly, in a few cases,

E(2) = <¢o IWR0W|¢O>
B® = (4|W Ry (W = E®) R,W 1)

B® = (W Ry (W = B ) By (W = EW ) B,W [t) — B (| W RIW )
(30)
etc.

The particular choice of expansion of /™ in the set of eigenfunctions of H,, leads
to the well known sum-over-state (SOS) formulas for the z components,

—Hz= ("pol‘%"‘po) (31a)
¢o|zl¢(°)>< |1o)
o= 30 O (31b)
k#o k
51.,(0) (o) N (0)y 7., (0) »
—M=Z%Ww<vyMw%Mvw 610
k,l#o (Eo -E; ) (Eo - E, )
_%m=:§:<%mﬁ%<@v (Wol21o) 1) (8712 — (ol 2k [92) (2| o)
Klmsto (2. - E(")) (5. - £ (E - EY)
(0) (0)
+a z<¢0| hb )( | |¢o)
(. - E("))
(31d)

The other tensor elements are obtained from exchanging x and y with z in all distinct
ways. Henceforth, we will recognize that all practical molecular quantum chemical
calculations employ a finite, discrete basis set, so from the beginning we are limited
to this choice, and we need not consider any continuum.

Evaluation of Static Hyperpolarizabilities

From the above, it should be abundantly clear that in a basis the derivative approach,
equations 20 to 23, and the SOS expressions, equation 31, are simply two equivalent
ways of expressing polarizabilities. Furthermore, considering that the choice of
excited eigenfunctions of H, is just one choice for a complete set representation
of the perturbed wavefunctions, {%(™}, the above SOS forms probably attract more
significance in NLO than warranted. For example, since F, — E,(co) is the excitation

energy, and since (1,&0[2]1&,(:)) is the z-component of the transition moment, it should
be possible to evaluate «;; from equation 31b purely from experiment by knowing
all electronic excitation energies and transition moments (including those for the
continuum in the exact case). The problem is knowing them all—a very large number!
Instead, attempts to estimate the SOS by the few known excitation energies and

i1




transition moments is likely to be very far from the true value (see our contribution
later in this volume (24)). Note for the ground state, all contributions to «a , from
¢,(c°) have the same sign, so there is no potential cancellation among the neglected
contributions. The problem is further compounded for 3,;, and y,,,,, where in addition
to transition moments from the ground to excited states, it is necessary to know the
transition moments relating two excited states, and that information is hard to obtain.
Note that (., can have either sign. Yzzz @lsO can have either sign, since although
the lead term corresponds to 02)|E0 - ’Holngz)) which must be negative (giving
a positive contribution to 7..,), the second term is positive, attenuating the value
of vz, Lacking a proof that the magnitude of one must be greater than the other,
either sign is possible.

From the above we have two viewpoints on the evaluation of static polarizabilities.
We can either evaluate energy derivatives of the Schrédinger equation in the presence
of the perturbation, or attempt some approximation to the SOS. Obviously, the former
does not require any truncation. (As we will see in Section 8 later, with proper
handling neither does the finite basis SOS.) The simplest recipe for evaluation of
the derivatives is to use what is called the finite-field technique. That simply means
solve the Schrédinger equation in the presence of the perturbation by choosing a small
finite value for ¢, of 0.001 a.u., e.g. Adding an electric field quantity to H, gives an
unbounded H (¢,) operator, and if we obtain its exact solution, the lowest energy state
would be the field ionized state, a molecular cation plus an electron; but in practice
we must use a finite basis set for its solution which is effectively like putting the
molecule into a box, and this gives a valid E(e,). Repeating the procedure at ¢, =
—0.001, we could obtain the dipole from the numerical derivative,

. E(go) s E(_Eo)
—lh, = =1
Kz O¢o solino 2¢,
The accuracy depends upon the size of the finite field strength. If it is too large, the

numerical derivative is not very accurate, while if too small, there is not a numerically
significant change in E(g,).

(32)

To obtain all B a g and 7, we need several more points, so we obtain
expressions like

Biiel, = -;-[E(Za,-o) — B(=%i0)| + [Bein) = B(=i0)]| + O(cd)

(33)

iiiiet =4 [E(eio) + E(—a,»o)] - [E(2a,-,,) - E(—25i0)] — 6E(0) + O(c5)
See (2) for others. Note each expression is accurate to the next odd (even) order
since only a, 7, € and p, B, ¢ are interrelated (2). This exclusion of the next
higher-order contribution greatly helps the precision of such a calculation. However,
note that the energy needs to be accurate to a couple of significant digits better than
€3, if we are to get B;;. That is, if £;, =0.001, we require energies to be 1011, If
€io =0.01, we would require at least 108, For v;;;;, we would need 10710 to 10-14. As
molecular integrals in quantum chemical calculations are seldom much more accurate
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than 1012, not to mention other parts of the calculation, finite field procedures for
hyperpolarizabilities can raise serious precision problems.

Another problem lies in the proliferation of tensor elements in S and y. Many
energy calculations involving field strengths in different directions are required to
evaluate all the numerical derivatives, and at higher levels of sophistication these are
quite expensive calculations.

The solution to the above problem is to analytically evaluate the derivatives. The
simplest is —p, = (vo|2|1,), which is just an expectation value. For the others,
analytical means that while solving the Schrodinger equation for E, we also directly
obtain all components of the derivatives, g—f{;, ag.:fga, 3go%;fago, etc. in about an
equivalent amount of time. This means we differentiate before evaluation by using
equations 20 to 23 and the explicit solutions for the wavefunctions and derivatives,
which are proportional to the perturbed wavefunctions given in equation 28. In a
substantial formal and computational achievement of 30 years duration, primarily
fueled by the necessity of analytical gradients for atomic displacements in molecules
(15,25,26), such analytical procedures have been developed in quantum chemistry.
Their limitation is that they have not been implemented for all methods. For example,
any-order analytical higher derivatives with respect to electric field perturbations have
been developed for the Hartree-Fock treatment of hyperpolarizabilities by exploiting
the recursive nature of perturbation theory (11,27), equations 28, 29. For correlated
methods, analytical second-order perturbative theory, [MBPT(2)], derivatives are
available for o and § (15). For other methods, even including highly sophisticated
correlated methods like coupled-cluster theory (28), the induced dipole p(&,) can be
evaluated analytically, from which numerical derivatives provide o, £, and v (13).
In this way, at least one £, or two to three orders of magnitude is—gained_in the
precision of 8 and 7.

Note that equation 31 represents analytical expressions, too, since no finite field
is involved in their evaluation. The latter viewpoint leads to the analytical evaluation
of the (dynamic) polarizability using the equation-of-motion (EOM) CC method
(20). Obviously, it would be ideal to be able to analytically evaluate third and
fourth derivatives using such powerful CC correlated methods, but the theory and
implementation has not yet been developed.

Basis Sets and Hartree-Fock Theory

Now that we know a way to calculate a static hyperpolarizability, we can consider

other aspects of the calculation. The first approximation to consider is Hartree-Fock

(HF), self-consistent field (SCF) theory. That is, we evaluate the energy and its

derivatives for the perturbed Hamiltonian by obtaining the energetically best (lowest)

single determinant solution, ®, = A(¢1(1), v2(2) - - - n(n)), to approximate ,. In
N

the absence of €,W, that means Exr = (®,|H,|®,), and further, H, ~ H, = 5 f(4)
k=1
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where f = h + v¢ff and v¢ff(1 E [ v;(2 @;(2)dr. The effective one-

7'12

particle operator v*/f(1) is an average over the two-particle part. The orbitals {p;}
are the solutions f(1)¢;(1) = €;¢;(1) where ¢; is the HF-SCF orbital energy (not
electric field € or € hyperpolarizability!). Self-consistency is required by ensuring
that the orbitals {(;} used in v*/(1) in f are self-consistent with the solutions. This
model provides the usual molecular orbital (MO) approximation that underlies much
of our conceptual understanding of molecules. This averaging procedure introduces
the correlation error, which pertains to electrons’ instantaneous interaction that keeps
them apart. It corresponds to the perturbation V = e Evef f(3), which

Tij

we will consider later in Section 6. The full Hamlltom;n of equatlon 41 is thus
H = H,+eW+V.

The simplest way to consider doing a HF calculation of a polarizability is
the finite-field procedure. That means that we compute the HF approximation to
H = H,+V + ¢,W where W is a one-electron operator for a small value of &,.
Then, we will obtain

Enr (o) = (Po(€0)H(e0)|Po(€0)) (34)

where ®,(g,) = A(@e1(1)pe2(2) ... pen(n)) is the HF wavefunction and its compo-
nent orbitals are all dependent on ¢,. Furthermore,

fe(l)(Pje( ) = fj(go)(Pje(l)a (35a)
fe(1) = fo(1) + e,W (1) +veff(1) (35b)

vef (1) = Z/%e
j=1

%e( )y (35¢)

Obtaining Fyr(e,) at various values of ¢, will provide the perturbed energies from
which the numerical derivatives may be obtained. This finite-field procedure is
frequently called “coupled Hartree-Fock” (CHF) (29).

Although it does not change the conceptual content or the numerical values (if
done carefully!), the much more computationally convenient analytical equivalent,
called coupled perturbed Hartree-Fock (CPHF), can be developed by taking the
derivatives before evaluation by expanding all the equations in perturbation theory
and explicitly solving them for perturbed orbitals, ;. = ¢;, + eocpgl) + - - -, orbital

energies, €; = €, + eoe§ ) 4..., and using vef = o2 4 g pefFD) 4 eZpeff2) 4 ...
from which Eyr(e,) = E(O) + e, F “g + - .- can be obtained.

To avoid too much of a digression, we will not present those equations here.
Excellent treatments for the time-independent case are given elsewhere (27,30,31).
This is also a special case for the time-dependent, TDHF, approach (11,32) discussed
in Section 7. Suffice it to say that CPHF calculations are preferable to CHF, and
several implementations are available.
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Even at the HF level, though, we have to pay close attention to the choice of
basis set, that is the (usually) contracted Gaussian atomic orbital (AO) basis used
to express the MO’s. It is apparent that it is essential to have a large, flexible
and polarized basis set for hyperpolarizabilities. The basis must correctly describe
matrix elements of the long-range operator # (i.e. Z,¢, %) while the usual AO basis
functions have been selected predominantly to describe the energy, which depends
on shorter-range operators like % and the kinetic energy operator. A basis like double
zeta (DZ) would use 4s and two sets of p functions to describe the energy of a
B,C,N,O,F, atom in a molecule, 2s for H. To provide adequate polarization to this
basis, particularly to describe the more diffuse and directional part of the charge
density, we need at least one or two sets of d-functions and probably more s and p
functions. The POL+ basis (14,33), optimized to describe polarizabilities has a 5s3p2d
distribution for B-F, and 3s2p1d for H, and would be the minimum recommended for
most hyperpolarizability determinations. The influence of basis set is illustrated in
the behavior of the components of o and Y for ethylene, shown in Table III.

Table III Comparison of Ab Initio SCF Hyperpolarizabilities as a Function of Basis
Set with Semi-empirical INDO and INDO/S for Ethylene (a.u.).

SEMI- AB INITIO SCF
COMPONENT|  EMPIRICAL EXP
INDO | INDO/S | STO-3G | DZ |631+PD| POL+
Ol 19.9 317 | 1145 | 336 | 360 | 364
oy 15.9 18.1 075 | 180 [ 229 | 246
g 2.8 3.7 284 | 86 | 194 | 231
a 12.9 17.8 501 | 184 | 261 | 28.0 | 287
1ran 155 | 2,002 | 263 | 1,961 | 3,205 | 3,300
Vs 95 194 2 111 | 2,008 | 2,800
V... -6 13 23 64 | 11,303 | 11,900
Vs 81 25 -1 43 | 1,680 | 1,600
Yoyse 43 82 9 17 | 2,344 | 2,500
Vs 98 304 40 | 231 | 3294 | 3,100
7 76 -218 37 | -241 | 6,230 | 6,500
yieSHG 85 -344 42 | -337 | 9,251 | 9,900 [ 9,029
+203
A THG 96 -811 49 | -538 | 15,836 | 17,500
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Notice that a minimum STO-3G basis underestimates the HF-SCF dipole polar-
izability by over a factor of 5, with double zeta (DZ) still being in error by ~30%.
The essential role of polarization functions is emphasized by the 6-31G+PD, mean-
ing additional diffuse p and d functions on C and H (34), and the (5s3p2d/3s2p1d)
POL+ basis (14).

The basis set effect is amplified dramatically for vy, where four products of
&, 9, and 2 are evaluated. Note that in inferior basis sets, including STO-3G and DZ,
fyl‘l’, even has the wrong sign, differing from the better converged value by at least four
orders of magnitude! However, once a few polarization functions are included, even
as in the modest 6-31G+PD basis, convergence toward the Hartree-Fock solution is
relatively good. The remaining differences between 'yl‘]’ and 'yl‘IiCSHG and ,yl”erG, which
means dc-induced Second Harmonic Generation and Third Harmonic Generation,
the potential experimentally observed quantities, lie in the frequency dependence
neglected in the static HF calculation. We will discuss that aspect later. Obviously,

it, too, is numerically important in providing reliable theoretical predictions.

Semi-empirical Methods

The other numerical values use the INDO (35) and spectroscopically parameterized
INDO/S methods (36), (the latter is also known as ZINDO (37)). Like nearly all
semi-empirical methods, INDO assumes an underlying minimum Slater-Type-Orbital
(STO) basis SCF description, which is close to that of STO-3G. In the INDO case,
the parameters are chosen to best reproduce the minimum basis SCF results. Hence,
if this were done successfully, results about on the level of STO-3G would be
obtained, clearly a level far inferior to that required for hyperpolarizabilities, and
this is illustrated by the observed INDO results.

INDO/S would appear to have a little better chance at obtaining reasonable values.
Despite the minimum basis set description, which is clearly suspect, the spectroscopic
parameterization is chosen to try to describe excitations to the low-lying excited states
of molecules and their transition moments within a single excitation configuration
interaction (CIS) description. After fitting parameters to known spectra of similar
molecules, the method is expected to describe related molecules reliably. If this were
true for all excited states, from the SOS formula of equation 31b, obviously the
dipole polarizability would be well described as it requires only those two pieces of
information. However, the low-lying states are only a few of those that contribute
to the polarizability. Furthermore, as all terms have the same sign, even though
those neglected might have a comparatively high excitation energy, their sum total is
significant. That is why there is a large error in @, particularly the o, component,
compared to the good ab initio results. Notice that INDO/S is competitive with the
ab initio DZ description, but unlike ab initio methods, semi-empirical results cannot
be systematically improved. You get what you get!

Once you expect to use INDO/S for § or 7, you now not only require transition
moments between ground and excited states but between excited states themselves.
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Such experimental information is very seldom available, much less for the plethora
of possible excited states, to offer any help with parameterization.

Table III demonstrates the dramatic failure of 7I(|) for ethylene, where the sign
is wrong and it is off by 4 to 5 orders of magnitude. The same failure happens
for 8. For the small molecules, INDO/S and INDO values of ﬂ‘l’ have the wrong
sign for CO and NH3! (See also (22) for other examples.) Consequently, consid-
ering the basis set limitations inherent to semi-empirical methods, and their general
inability to describe transitions between excited states, only generalizations beyond a
minimum basis description, and further and more severe parameterization explicitly
for hyperpolarizabilities, should enable such methods to offer any kind of quanti-
tatively reliable results. For design purposes, the hope is to at least reproduce the
correct trends among similar molecules, and typically for only one dominant axial
component rather than the whole tensor; a simpler problem.

The other widely used semi-empirical methods, like those in MOPAC (38,39)
(namely MNDO, MINDO, AM1, PM3), share with INDO a minimum basis descrip-
tion, but parameterization is attempted to be made directly to experimental results
like dissociation energies and other properties, instead of the minimum basis SCF
values. In particular, unlike INDO/S, such approaches have not been developed o
apply for excited states as recommended by the SOS interpretation. But even from the
energy derivative viewpoint, which pertains to INDO without the “S” as well, there is
still little reason to believe that such methods have much hope of reliably describing
qualities as sensitive to nuances of charge distributions as are hyperpolarizabilities.
Several MOPAC examples that demonstrate failures are presented in ref. (22).

Electron Correlation

Up to now, we have only considered HF level methods, ab initio or semi-empirical.
After ensuring adequate basis sets, there are two particular corrections we need to
consider: one is the frequency dependence (discussed in the next section) and the
other electron correlation. Both would be essential, including their mutual coupling,
to offer the definitive theoretical study for the purely electronic part of molecular
hyperpolarizabilities. To initially isolate the effects, we will start with correlation
corrections for static hyperpolarizabilities.

As discussed above, HF theory makes the approximation that one electron moves
in an average field of n-1 other electrons, to enable replacing the two-particle operator
in the Hamiltonian by the 3" v%/¥(i), one-particle Hamiltonian. This ignores that

electrons are charged spe:ciesz causing their motions to be instantaneously correlated.
Clearly, the correlation of electrons bestows an additional degree of stability to the
molecule, as the electrons are allowed to avoid each other, and this effect significantly
contributes to the molecule’s charge distribution and excited states description.

In equation 31, we derived formulas for hyperpolarizabilities based upon knowing
the exact solutions to H,, which is the Hamiltonian in the absence of the electric field
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perturbation, €,W/. Such exact solutions properly include all two-electron effects in
H,, meaning their eigenvalues and vectors are correlated. This should be contrasted
with replacing H, by the H, = )", f(i) operator as employed in the HF theory. These

2
additional effects of correlation, whether used from the energy derivative viewpoint
or the SOS, can have a dramatic effect on the observed results.

We can consider various approaches to electron correlation, but those most fre-
quently applied to hyperpolarizabilities are many-body perturbation theory (MBPT)
(4,5,40), known in some programs as MP) and coupled-cluster (CC) theory
(7-9,14,41,42). In MBPT, in the absence of the electric field, electron correla-
tion corrections could be introduced with the same equations derived in equation
6-11, where H, is chosen to be H, = ) f(¢) and the correlation perturbation

V = E;% - Zveff(i) replaces W. Then E? = (8,|VR,V|®,) = (@, |V [V,

2, )
This de]ﬁnes MBPT(2). MBPT(2) is the simplest correlated method, consisting of the
initial contribution due to double excitations from occupied to unoccupied orbitals
(i.e. <I>§’}’). MBPT is usually applied in a given finite order n [MBPT(n)], where n=4
is the highest frequently used.

In the absence of an electric field, proper treatment of correlation in hyperpolar-
izabilities requires a double perturbation approach (43) where all couplings between
V and ¢,W are allowed (44), with ¢,/ applied in a given order to describe the
particular polarizability, and V is preferably included in all orders. A straightforward
double perturbation approach is possible, but usually in practice, the requisite cou-
pling between V and W is handled in two other ways. The first way is by correlating
states, and then adding the W perturbation; the route taken in equations 28 to 31: This
will be the EOM-CC route described in Section 8. Second, we can take the viewpoint
that we will first solve the HF problem, and then add correlation to that HF solution
straightforwardly, except that H,, V, ®, and ¢(® are all dependent on &,. That
is, we evaluate correlation corrections to the electric field perturbed Hamiltonian as
fo = fo+ oW + 47 as in the CHF method, so

Holeo) = 3 £eli) = 3 (fo e +0277) ()

V = H(e,) - Hofco) (36)
E(e,) = Ecur + E®(e0) + E®(e,) + - -
EcrF(£0) = {®o(0)|H (20)|Po(e0))

and all evaluation of correlation corrections pertain to V(£,); such as E®(g,) =
((IJO(EO)IV(EIO)|’(/J(1)(€O)), and, similarly, in higher orders of MBPT (2,3,7,40). Just as
in HF theory, we have the option of doing this analytically or as a finite field.

CC theory offers a natural generalization of MBPT that sums categories of
excitations to infinite order. For example, CCSD means all single and double
excitations (ie. Yccsp = exp (11 + T2)®, where ®, is the independent particle
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model and 77 and T3 are the single and double excitation operators,

Tyd, = Zt“b@“b (37)

i<
a<b

where occupied orbitals i and j are replaced by unoccupied orbitals a and b,

Ti®, = ) {0} (38)

By virtue of the exponential expansion, Wccsp also contains triple excitations,
TiT»®,, quadruple excitations, T2®,, etc., ensuring a highly correlated solution.
CCSD is correct through MBPT(3) with many additional higher-order effects (9,28).
The CCSD(T) model includes, in addition, a non-iterative (28) evaluation of ‘“con-

nected” triples, T3®, = ‘Zk tfjb,‘;@%b,j This model, correct through MBPT(4),
<<

is demonstrably close to tix<eb<lc)asis set limit or full CI solution—the ultimate re-
sult (28). We can simply evaluate the CC results, just as described above for
MBPT, by letting 9o to be ¢, dependent, [(Ycc = exp (T'(e,))Po(£,)), along with
H(eo) = Ho + V(o) + €W and Ecc(e,) = (®o(e0)|H(g,)eT ) |®,(g,)].

Even better, because of the advantage of analytical evaluation even for the induced
dipole, we might describe how that is done in CC theory. MBPT follows as a special
case (18). Because cc(co) = exp (T(5))Po(€,) is an infinite series, we do not

evaluate the induced dipole ji(e,), as

fi(€0) = (Yoc(€n) W [vac(ea))/ (dec (o) [Pac(€s)) (39)

because the expression would have to be truncated. Instead, we can derive the form
(18-28),
fi(€0) = (®o(e0)|(1 + Algo))e™TEIWeTE) |, (e,))

= Z TpqTrq (40)
Pq

where A is a de-excitation operator, complementary to the excitation operator T and
Ypq is the element of the one-particle “relaxed density” matrix (28). Both A and T
have to be determined from the CC equations. Subsequent finite-field differentiation

relative to £, provides the various polarizabilities like Q}(Eﬁ a, 68 6” Effi’) = 2!B, etc.
As mentioned, this greatly improves precision and diminishes the number of distinct

€, values required.

Table IV shows the effect of correlation on static X( )(0 0,0) and x( )(0; 0,0,0).

I
Note the factor of 2 change for X|(|2) of NH3, and the order of magnitude and sign

change for H,S. Similarly, x(3) changes substantially. This large correlation effect has
been observed since the initial correlated studies of molecular hyperpolarizabilities
(2,3), and makes it apparent that “predictive” ab initio methods for hyperpolarizabil-
ities must include electron correlation.
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Table IV Comparison of SCF and Correlated Static Hyperpolarizabilities.©

X|(|2)“ (1032 esu/molecule) x|(|3)b (10% esu/molecule)
SCF | MBPT(2) | CCSD(T) SCF MBPT(2) | CCSD(T)
H, - - - 46 50 51
N, - - - 61 78 85
CO, - - - 67 98 97
CHy - - - 546 630 563
Co 9.1 9.7 10.2 85 126 134
HF -2.3 -3.0 -2.9 27 47 47
H,0 -4.7 -7.6 -1.8 85 150 151
NH; -6.5 -14.0 -14.8 200 340 353
HCl -1.3 -34 -3.3 213 287 295
H,S 0.6 -4.5 -4.0 470 620 664

® B] = (Bijj + Bjij + Bjji)/5 with summation convention. Xl(lz) = Bj/2, so
conversion to a.u. is 4.3195 x 1033 esu/molecule/a.u.

b Y = (wiji + Yijij + ¥ijji)/15 with summation convention. Xl(|3)
conversion to a.u. is 8.395 x 10! esu/molecule/a.u.

2 Basic sets listed in Tables VII and VIIL

= 7,/6, so

Frequency Dependence
All experiments are frequency dependent, and frequency dependence introduces many
different processes that become the same in the static limit.

Instead of the static field perturbation, &, - W, consider the expansion of the
induced dipole analogous to that in equation 24, for a time-dependent, oscillatory
field, € = ¢, + €, cos wt,

pi = (U(e, t)|ri|¥(e, t))
= #i(O) + Olz'j(O, 0)€oj + aij(—w; w)eoj cos wit

1 1
+ 2_!,3ijk(0§ 0,0)€0;€ok + Zﬁijk(O; W, —W)EwjEwk 41)

1
+ Bijr(—w;w, 0)ewj€or cos wt + Zﬁijk(—Qw;w,w)swjgwk cos wt

Now, in addition to the static terms we have previously considered, we obtain a
number of terms that correspond to different incoming and outgoing frequencies. For
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example, f;jr(—2w;w,w) corresponds to second harmonic generation (SHG) with
incoming frequencies w + w resulting in an outgoing frequency, 2w. Similarly,
0;j(—w,w) corresponds to the dynamic polarizability, and f;;x(0;w, —w) is called
optical rectification (OR), and f3;;x(—w;w, 0) corresponds to the electro optic Pockels
effect (EOPE). If we allowed the frequencies to be different, §(—w; — wo; wy,ws)
would correspond to two-wave mixing. Similarly, many such components occur in
7. A summary of them is shown in Table V. All become the same in the static limit;
hence, without inclusion of frequency dependence in the quantum mechanical method,
we cannot distinguish between the different processes. Obviously, we can obtain each
of these quantities from an appropriate derivative,

8% pi(e)

1
m = iﬂijk(—o; w, —w) (42)

etc. Just as in the static case, that derivative can be further related to a quasi-energy
derivatives (45,46) from the Frenkel variational principle (/7).

Table V Representative Non-Linear Optical Processes, with Corresponding Resultant

(we) and Incident (wi,wy . .. ) Frequencies.

Non-Linear Optical Process -wg -wy Wy -w3
First Static Hyperpolarizability 0 0 0 -
Second Harmonic Generation (SHG) 2w w w -
Electro-Optics Pockels Effect (EOPE) -w 0 w -
Optical Rectification (OR) 0 w - -
Two-Wave Mixing -(w1+ws) Wi wy -
Second Static Hyperpolarizability 0 0 0 0
Third Harmonic Generation (THG) 3w w w w
Intensity-Dependent Refactive Index W w w w
(IDRI)

Optical Kerr Effect (OKE) -wq w1 wy -wy
D.C.-Induced Optical Rectification 0 0 w w
(DCOR)

D.C.-Induced SHG (DC-SHG) 2w 0 w w
Electro-Optic Kerr Effect (EOKE -w w 0 0
Three-Wave Mixing -Wg w1 w1 wy
D.C.-Induced Two-Wave Mixing -(wy1+ws) 0 wq wy

The first way to augment a static calculation with some measure of frequency
dependence is to recognize that it may be rigorously shown (47) that for low
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frequencies,
B(~wo;w,w) = B(0;0,0) (1 + Aw] + Bw} + - ) (43)

where wr, = w2+w?+w3 and A and B are unknown constants. Without an independent
evaluation of A and B, the most we can conclude are the ratios of the various dispersion
effects.

For example, neglecting the smaller quartic term, the SHG and EOPE values are
B(~2w;w,w) = B(0;0,0) (1 + 6Aw?)

Blw;w,0) = B(0;0,0)(1 + 2Aw?) (44)

showing that their ratio,

B(—w;w,0) :1+2Aw221+4Aw — 84N 45)

Obviously, SHG has a much greater dispersion effect than EOPE. Similarly, we have
for 7,

Y(~we; w1, wa,ws) = 7(0;0,0,0)(1 + A'w? + B'w} +--) (46)

The components of v, OKE, IDRI, DCSHG and THG correspond to the values
1 plus 24'w?, 4A'W?, 6A'w? and 12A4'w? | respectively, providing similar ratios.
Obviously, the degree of dispersion follows the order THG > DCSHG > IDRI >
OKE. However, we must at least know the constants to relate the various processes,
particularly, to static quantities. It appears the only way at present to obtain any
quantitative relationship is to evaluate the frequency dependent quantum chemical
results.

The first such viable approach is the time-dependent Hartree-Fock (TDHF)
method. Just as HF theory provides the simplest approach for static polarizabilities,
TDHF provides the simplest ab initio solution to the time-dependent Schrodinger
equation H(t)¥(t) = z%@ and, thereby, frequency dependent processes. Just as in
the static case, we can impose a single determinant approximation for ¥(t) ~ ®,(t),
and by applying the time-dependent (Frenkel) variational/principle obtain the TDHF
(or RPA) equations. The RPA equations date from long ago (48); however, this
only pertains to excitation energies and o. In 1986, we made the generalization to
B, v, &, € etc. and showed that analytically we can evaluate the frequency de-
Eend_ent hyperpolarizabilities from the derivatives in equation 36 in any order (11)
giving ready TDHF access to hyperpolarizabilities. Others have since implemented
equivalent TDHF approaches for § (45) and for § and v (32). Recently, the unre-
stricted Hartree-Fock (open shell) generalization has been made (49). Figs. 1 and 2
graphically illustrate the dispersion behavior for various processes, which reflect the
relative numerical proportions.
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Figure 1
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Table VI shows the effect of dispersion in HF-level calculations of frequency
dependent polarizabilities to SHG and dcSHG processes. For X|(|2) the average change

is 20% and X(S) is 26%. Obviously, from the static values the other dynamic processes
can show greater and lesser effects. Just as usual, we can take the derivative or SOS
viewpoint in TDHF. In the latter case, the excited TDHF states are the usual RPA
ones (24).

Table VI Comparison of Static and Dynamic?* Hartree Fock Hyperpolarizabilities.?

Xl(lz) (1032 esu/molecule) X|(|3) (10% esu/molecule)

SCF TDHF SCF TDHF
H, ] - 46 53.6
N, ] - 61 69.0
o, - _ 67 76.6
ool - ] 546 832
Co 9.1 10.5 85 102
HF 2.3 2.5 27 30
HCI 1.3 -1.6 213 270
H,0 4.7 5.4 85 100
NH; 6.5 9.3 200 280
H,S 0.58 0.64 470 690

4 Values by TDHF for SHG and dcSHG at 694.3 nm.
b Basis sets listed in Tables VII and VIIL

At this point, we have a procedure based upon TDHF to evaluate the dispersion,
and a procedure to add electron correlation to static hyperpolarizabilities. Clearly,
both are critical in obtaining predictive values. Hence, guided by the fact that equa-
tions 37 and 40 are exact in the low-frequency limit, it makes sense to use a percentage
TDHF dispersion correction (13) to augment static, correlated hyperpolarizabilities;
namely,

: — a0 BrDHF (Wo; w1, ws)
Blursn,ez) = B(030,0) x Bur(0;0,0)

YTDHF (Wo; w, w1, w2)

By equating the percentage correction to Aw% at a particular frequency, a value of A
could be extracted, as well; or fitting to several different processes, A and B. In the few
cases where frequency dependent correlated results have been obtained (20,50,51),
the percentage TDHF dispersion estimate has been well supported. However, it is
clear that if the TDHF=RPA result for the excitation energies are poor, then the slope

(47)

V(we; w, w1, wa) = 7(0;0,0,0) X
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of the curve in Figs. 1 and 2 will have to eventually change to be able to approach
the different asymptotic values of the excitation energy.

Using this decoupled TDHF dispersion, static correlation procedure, we obtain the
results shown in Tables VII and VIII. All fall within 10% error of the experimental

result except for FH, whose errors are 28% for XI(IZ) and 24% for X|(|3); for CoHy,

whose x(3) is too large by 13.4% and Nj, and CO, whose error is a modest 11%.
We have discussed FH at length elsewhere (7,14), so we will not repeat that here,
except to say that we dispute the experimental values, expecting an error in its
determination. Extensive studies of the convergence of FH’s hyperpolarizabilities
to basis set, correlation, frequency dependence and vibrational corrections (/4), show
no convergence to the experimental values. Instead, we propose that the correct value
for x(z) is -3.6 + 0.3x10732 esu/molecule and X(3) is 55 + 5x103 esu/molecule. For
the similar HC] molecule, our CCSD(T) results fall within our goal of a 10% error.

Table VII Theoretical® vs. Experimental® Hyperpolarizabilities of Molecules.

of? = g
IDHF MBPT(2) CCSD CCSD(T) | EXPERIMENT
CcO 10.5 11.2 11.4 11.7 129 1.4
HF -2.5 -3.3 -3.2 -34 -4.70 £0.41
HCI -1.6 -4.0 -3.3 -3.8 -4.22 +0.50
H,O -5.4 -8.8 -8.2 -9.1 9.4 X0.4
NH3 -9.3 -20.1 -18.4 -21.2 -20.9 £0.5
H,S 0.6 -5.0 -3.4 -4.5 -4.3 0.9

#Value corrected for the dispersion effect at 694.3 nm using the formula,

TDHF(w)

(n) _ ) — ——
X)) = Xijeors (@ = 0) X TDHF(w = 0)

The calculations are performed with basis sets [Ss3p2d] for C, N, O and F; [7s5p2d]
for S; and [3s2p1d] for H. Lone-pair functions are added for HF, H,O and NH;. For
HCI, basis is [8s6p3d1f] for Cl and [3s2pld] for H. All molecules at experimental
geometries and there is no estimate of vibrational corrections. H,S values in lone-pair
augmented basis are 1.0, -4.4, -2.8 and -3.8, respectively (/4). The lone-pair basis
HCI values are -1.0, -3.1, -2.6 and -3.0.

bValue obtained by dc-induced Second Harmonic Generation.
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Table VIII Theoretical® vs. Experimental® Hyperpolarizabilities of Molecules.

X|(|3) _ % ,chllcSHG

TDHF MBPT(2) CCSD | CCSD(T) EXP
H, 54 58.2 59.3 59.3 60.5¢
N, 69 88.7 90.6 96 86.6 £1.0
CO, 77 111.5 107.9 110 1119 £1.3
CHy 822 960 820 860 758 £17
CO 102 151 149 160 144 +4
HF 30 52 49 53 70 £10
HCl 270 364 352 374 347 x15
H,0 100 180 170 180 194 £10
NH3 280 460 430 470 511 #9
H,S 690 910 870 930 865 +22

@Value corrected for the dispersion effect at 694.3 nm using the formula,

TDHF(w)
TDHF (w = 0)

Xl(ln)(w) = XI(IZ())rr(w = O) X

The calculations are performed with basis sets [Ss3p2d] for C, N, O and F; [7s5p2d]
for S; and [3s2pld] for H. The lone-pair functions are added for HF, H,O and
NHj. For HCI, basis is [8s6p3d1f] for Cl and [3s2pld] for H. All molecules at
experimental geometries and there is no estimate of vibrational corrections. The
lone-pair augmented H,S basis values are 731, 970, 930 and 980, respectively. The
lone-pair basis HCl values are 274, 369, 356 and 378.

bValue obtained by dc-induced Second Harmonic Generation.

“Exact electronic value [D. M. Bishop, J. Pipin and S. M. Cybulski, Phys. Rev.
A43, 4845 (1991)]. The experimental value of 67.2 includes a significant vibrational
effect.

For C;H4 and N, we can consider more recent or rescaled experimental values
(22). These are 76.6 = 17 and 88.8 * 1, respectively. This does reduce the C;H, error
to 12.3% and that for N; to 7.9%. Using the experimental results in the tables, the

average error for CCSD(T) X|(|3) is 9.4%. Excluding FH, it becomes 7.3%. Similarly,

the average error for x|(|2) is 9.4%, or 5.7% without the FH example, falling within
our 10% error target objective. The various contributions are shown in Table IX.
Clearly, correlation and frequency dependence are critical, and CCSD(T) is better
than CCSD. However, it is gratifying that MBPT(2), which is a lot cheaper than
CCSID(T), maintains about a 10% error. This level of correlation can be applied to
much larger molecules (52) than can CCSD(T).
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Table IX Percent Error of Hyperpolarizabilities at Various Levels Compared to
Experiment.

Xy X
HF (w=0) 57 46
TDHF (w) 50 31
MBPT(2) 12 (9)* 9 (7)*
CCSD 19 (16)* 8 (6)*
CCSD(T) 9 (6)* 9 (7)*

*Without FH example.

Correlated Frequency Dependent Polarizabilities

Despite the success of the decoupled correlated/TDHF results shown above, the most
rigorous method would include the full coupling between correlation and dispersion.
There have only been three attempts of this type for hyperpolarizabilities: a second-
order [MBPT(2)=MP(2)] level method (50); a multi-configurational (MCSCF) linear
response approach (57); and our EOM-CC method (20). The first two are devel-
oped from the energy (or quasi-energy) derivative viewpoint, while the latter refers,
conceptually, to the SOS expressions in equation 31. In other words, EOM-CC pro-

vides excited states, {@b,(co)}, their excitation energies, (Eo - E,Eo)), and generalized

transition moments, (1&,(:) |73|%0), from which the SOS expressions could be formally
constructed. That form is particularly convenient, since frequency dependence can
be trivially added to such an SOS expression. For example, for some frequency w,

N () OO
—aij(—-w;w)z {E (¢0| ll¢k )<¢'k |J|¢0) + (¢0!TJ|¢k )<¢k I z|¢o)} (50)

w ——
io wg + W — w

When w = E, — E,(co) = wg, we have a pole, whose residue is the dipole strength

(olrs i 3 i kbo)-
The basic idea of EOM is very simple (53). Consider the solutions to the
Schrodinger equation for an excited state, 47 and for the ground state, ),

Ho@bo = Eo"/’o (51a)
Hop) = By (51b)

Now we will choose to write 1/’1(:) = Ry, , where R}, is an operator that creates
excitations from 4),. If we limit ourselves to single and double excitations, we
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will define an EOM-CCSD approximation. Inserting the excited state expression into
equation 49b, multiplying equation 49a by R from the left and subtracting, we obtain

(HoRa = RiHolibo = (B = Bo) Risko (52a)
[Ho, RiJtbo = wiRitho (52b)

with the commutator between H, and Ry, [i.e. (Ho, Ri)], expression gives the
“equation-of-motion,” from the obvious connection with Heisenberg’s form. To
introduce CC theory, we simply choose for the correlated ground state, v, = ¥cc =
exp (T1 + T2)®,. As Ry, and T, are all excitation operators, [Rg,Ty,] = 0, and we
can commute the operators to give,

le"TH,eT, Ri)®, = [Ho, Ri)®p = wi R3 D, (53)
recognizing that
Ri®o =10+ Y 170 + > r{l®Y (54)
i,a i<y
a<b
the coefficients {r{, rfjb} are to be determined by the matrix equation,
ﬂrk = TpWg (55)

Since H, is not Hermitian, we also have left-side eigenvectors, ®,L, which unlike
R ®,, correspond to de-excitation processes. The L and R; states are biorthog-
onal, (®,|L;Ri|®,) = 6r;. Their matrix equation is, 1;H, = wil;. The corre-
sponding generalized transition moments are obtained from (®,|Le™Tr;eT R;|®,) =
(®o|Lx7iRi|®o). Notice (@,|LTiRi|P,) # (®o| L7 Ry |®,) since the operator 7; is
not Hermitian. The observable quantity, however, is the dipole strength (the prod-
uct), not the transition moment itself.

Now if we return to equation 48, in terms of EOM-CC solutions, we have

ois(mwiw) = 3 { (®o|(1 4 A)Fi Ry | o) (B, LaT|®0)

ko e (56)
4 (@, (1 + A)7 Ry | B0 ) (o | L175] Do)
W —w

Notice, we used the fact that (®,|L, = (®,|(1 + A), which is the same A operator
introduced in equation 40, and that R, = 1.

Though informative in this form, we would still have to truncate the SOS.
To avoid any such truncation, we need to recognize that all EOM-CC states are
ultimately represented in terms of their underlying single and double excitations, i.e.
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the expression in equation 54. If we collectively represent all {®¢; @f}’} as |h), it
may be shown (79) that equation 48 may be written as

—~ai(~w;w) = ((Bol(1 + A)(7 — (7)) T |3,)

o i (i) 57
H(Do|(1+ A)(75 — (FNTL| o))

where (7;) is the generalized expectation value like that in equation 40, without
€, dependence). Analogous to ordinary perturbation theory [equations 28 to 30],
the first-order perturbed correlated wavefunction is given in terms of the resolvent
operator matrix R,,

(b|TL|2,) = (h|Boe  w - Hoh) ™ (Bf7j[0.) = Ro(hlfs[®,)  (58)
In practice, instead of inversion, we solve the very large linear equation,
(hlEcc % w — Holh) (h|T5[8,) = (hIF;|2,) (59)

at a given value of w for the Til) coefficients. Hence, we can evaluate the SOS
dynamic polarizability without any truncation (19,20)!

From the above evaluation of a(—w;w), we can obtain the hyperpolarizabilities
for the optical Kerr effect (OKE) as follows. 3(—w;w,0), sometimes also called the
EOPE, is the second-order hyperpolarizability obtained from a Kerr effect experiment,
while the EOKE corresponds to (—w;w, 0,0). Because of the static fields in both
processes, we are able to obtain f(—w;w,0) and y(—w;w,o0,0) from finite-field
differentiation of a(—w;w). That is, we evaluate ;;j(—w;w) analytically, using
equations 56 and 57, where we use the perturbation &, - 7 instead of just 7. Then we
obtain a(—w;wo,€s), from which

Oa(—w; w; €,)

B*(~w;w,0) = B (60a)
82a(w'w'6 )
k . — ) ¥y “0
Y (~w;w,0,0) = T (60b)

Results are shown in Table X for NH3 and trans-butadiene as a function of frequency,
for EOM-CC and TDHF. The usual very large effect of correlation accounts for the
much larger magnitude for the EOM-CC values, while the comparative dispersion
values are indicated as the percent dispersion in parentheses. For NHj, there is
about 10% greater dispersion as measured by EOM-CC compared to TDHF at the
high frequencies (0.1 a.u.), but not at the low frequency (0.0656 a.u.) value used
in the dcSHG experiments we previously described. For butadiene, the percentage
dispersion is close, but the slightly smaller value helps to reduce our calculated values
to be in somewhat better agreement with experiment. Unlike most other molecules
we have studied, TDHF results for ethylene and butadiene are fortuitously close to
experiment, while correlation hurts the agreement. The origin of this is not yet clear,
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but the fact that the correlated dispersion is smaller than that for TDHF could be
ascribed to the TDHF=RPA excitation energies being too low, causing the curve in
Fig. 2 to rise too quickly to approach the wrong asymptotic values. For multi-bonded
molecules like ethylene and butadiene, the restricted HF result is not triplet stable,
although this only prohibits RPA from correctly describing triplet excited states, the
RPA singlet excitations tend to be lower than experiment; contrary to that for most
systems. This may partially account for TDHF giving higher percentage dispersion
corrections.

Table X Kerr Effect Tensors for NH3 and C4Hg Calculated at Different Frequencies
(in au).2

Frequency 0 0.043/1060 0.0656/694.3 0.1/455.6
(au/nm)
NH;® (POL+)

b -35.9 ] 41.5 (15.7%) | -51.5 (43.5%)

B 147 -16.6 (12.7%) | -19.7 (33.8%)
5711.56
‘e 4136.63 ] 4703.00 (13.7%) | (38.1%)
v 2404.99 2646.36 (10.0%) |  3039.95
(26.4%)

C4H4® (631G+PD)

(<w3w,0,0) 41200 44000 (6.9%) | 48100 (16.8%)
Taoa{ZWW 5, 23514 25571 (8.7%) | 28733 (22.2%) i

v 20700 21900 (5.7%) | 23700 (14.1%)
14812 15794 (6.6%) 17277 (16.7%)

2 The numbers in upper and lower rows are evaluated by EOM-CC and TDHF,
respectively. x is the C3 molecular axis.

b g% = %(3Bizi — Biic)

9t = 5% = iisi)

4 The numbers in upper and lower rows are evaluated by EOM-CC and TDHF,
respectively. The x component corresponds to the longitudinal molecular axis and

the z component is perpendicular to the molecular plane.

We have not discussed vibrational contributions to predictive studies of hyper-
polarizabilities, but these can sometimes be important (27). In equation 48, e.g., we
could have contributions from all vibronic states indexed by k, instead of just the
electronic ones. For an optical frequency, w, which is much greater than a vibrational
energy, such slight changes in Eko) would have negligible numerical value. How-
ever, for NLO processes that involve static fields, the SOS formulas will have some
denominators without an additional large w value, causing the vibronic changes in
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E,(co) to be more significant to the final result. The vibrational energy levels can be
substantially perturbed by such an electric field as we have shown numerically for FH
and H, (10). Because of the static fields in OKE, this is an example where attention
needs to be paid to such effects. Assisted by a determmatxon of 6kand fyk (54), we
can extract from our calculations predictions for 8* = ﬂ +43; and ~k = 7k +'yk that
could be compared with experiment. For NH3;, MBPT(2) values for 8} and +; are
3.8 and 135 a.u. at 0.07 a.u. This suggests that 3* ~ —36, v* ~ 4800 at w=0.0656.
For butadiene, there is a larger (SCF), vY=1395 to 1762 a.u., [55] giving v ~25000.

Future Extensions

There are a couple of fairly obvious extensions that should be made in future
theoretical work for NLO material design. In the short term, we obviously need
to generalize analytical frequency dependent EOM-CC for all the components of
B and 7. Also, considering the good accuracy of MBPT(2) level correlation, purely
analytical, frequency dependent versions for 8 and v are strongly recommended,
that should remove the current constraints (50) Other routes to partitioned EOM-
CC approximations that are operationally second-order, can be envisioned (56) and
should be pursued.

Obviously, it would also be nice to be able to treat hyperpolarizabilities for
molecules in solution. Several such solvation methods, ranging from continuous
reaction fields to more detailed solvation models are becoming available (57). These
should help in sorting out the large discrepancies among results from solvation
experiments (EFISH) (58).

In the longer term, we need theoretical methods comparable to that presented for
small molecules that are applicable to extended, polymeric systems (59). The first
such approaches should employ periodicity, with future extensions directed at the
inclusion of impurity effects.

Today, it is not possible to use analytical gradient techniques with correlation to
move atoms around in polymers, as it is for molecules. Nor, are there the quality
ab initio methods for band gaps, and excited states, and polarizabilities as there are
for molecules. Clearly, developing the tools for rational NLO polymer design should
have a high priority.

As current high-level ab initio methods will eventually encounter limitations,
even for periodic systems, simplified techniques should be pursued, simultaneously.
The questionable reliability of semi-empirical MO theory suggests that a better “semi-
empirical” approach is likely to be offered by modern density functional theory (DFT).
Although DFT has a rigorous base, in application it is semi-empirical. Such methods
are well known for extended systems, and have decided computational advantages,
compared to ab initio correlated methods, but they have not yet been demonstrated
to provide comparable results to those presented in this chapter. In fact, one paper
says that Kohn-Sham DFT does not work for molecular hyperpolarizabilities (60). We
have considered other DFT variants, however, and find that competitive results can be
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obtained (61). The significant computational advantages of DFT make this a profitable
area for study. Frequency dependent approaches need to be developed, however.
Also, the conventional wisdom is that DFT does not admit treatments for excited
states. Exploiting the equivalent derivative viewpoint should avoid any such formal
restrictions for polarizabilities. Also, the ultimate limitation of applied DFT methods,
like semi-empirical MO methods, is that there is no way to systematically converge
to the exact result. New methods that combine elements of ab initio correlated theory
with DFT methods will be forthcoming and might alleviate this failing.
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